In a wireless network that conveys status updates from sources (i.e., sensors) to destinations, one of the key issues studied by existing literature is how to design an optimal source sampling strategy on account of the communication constraints which are often modeled as queues. In this paper, an alternative perspective is presented -- a novel status-aware communication scheme, namely \emph{parallel communications}, is proposed which allows sensors to be communication-agnostic. Specifically, the proposed scheme can determine, based on an online prediction functionality, whether a status packet is worth transmitting considering both the network condition and status prediction, such that sensors can generate status packets without communication constraints. We evaluate the proposed scheme on a Software-Defined-Radio (SDR) test platform, which is integrated with a collaborative autonomous driving simulator, i.e., Simulation-of-Urban-Mobility (SUMO), to produce realistic vehicle control models and road conditions. The results show that with online status predictions, the channel occupancy is significantly reduced, while guaranteeing low status recovery error. Then the framework is applied to two scenarios: a multi-density platooning scenario, and a flight formation control scenario. Simulation results show that the scheme achieves better performance on the network level, in terms of keeping the minimum safe distance in both vehicle platooning and flight control.
翻译:在向目的地传送来自来源(即传感器)的状态更新的无线网络中,现有文献研究的关键问题之一是,如何根据通常以队列模式建模的通信限制,设计最佳源抽样战略。在本文中,提出了另一种观点 -- -- 新颖的状态认知通信系统,即模拟城市-移动通信系统(SUMO),使传感器成为通信-不可知性。具体地说,拟议方案可以基于在线预测功能,确定一个状态包是否值得传输,同时考虑网络状况和状态预测,使传感器能够在没有通信限制的情况下生成状态包。我们评价了软件-定义-无线电(SDR)测试平台的拟议计划,该计划与协作的自主驱动模拟器(即模拟-城市-移动通信系统)相结合,以产生现实的车辆控制模式和道路条件。结果显示,根据在线状况预测,频道占用率是否值得大幅降低,同时保证低状态恢复错误。然后,框架适用于两种情景:多频谱-辐射(SDRDR)测试平台(SUF-Def-Def-Def-Radio-Radio)测试平台(Slim-dressional dressional dressionaltravelilling dression dressional dressional dression) 和Sim-livelopmental dislation sliveloping slivelopation dressional dressional dressional dropmental dressional dressional dressional dropment lavelopmental siguidemental lavelmental lavelmental sictional siblivelopmental lavelopmental lavelopmental lavelmental sibaldal sivel sipral sibal sivelmental si sipral lavelmental lavelmental lavelmentaldaldal sial si si si siavelmental siabal lavel si si si si si si si si siaction siaction lavel lavel laction lavelmental lavelmental si