Evolutionary game theory has been a successful tool to combine classical game theory with learning-dynamical descriptions in multiagent systems. Provided some symmetric structures of interacting players, many studies have been focused on using a simplified heuristic payoff table as input to analyse the dynamics of interactions. Nevertheless, even for the state-of-the-art method, there are two limits. First, there is inaccuracy when analysing the simplified payoff table. Second, no existing work is able to deal with 2-population multiplayer asymmetric games. In this paper, we fill the gap between heuristic payoff table and dynamic analysis without any inaccuracy. In addition, we propose a general framework for $m$ versus $n$ 2-population multiplayer asymmetric games. Then, we compare our method with the state-of-the-art in some classic games. Finally, to illustrate our method, we perform empirical game-theoretical analysis on Wolfpack as well as StarCraft II, both of which involve complex multiagent interactions.
翻译:进化游戏理论是将传统游戏理论与多试剂系统中的学习动力描述结合起来的成功工具。 如果有互动玩家的一些对称结构, 许多研究侧重于使用一个简化的超光速报酬表作为分析互动动态的输入。 尽管如此, 即使是最先进的方法, 也存在两个限制。 首先, 在分析简化报酬表时存在不准确性。 第二, 现有工作无法处理两个人口组的多功能者不对称游戏。 在本文中, 我们填补了超常报酬表和动态分析之间的空白, 没有不准确性。 此外, 我们提出了一个通用框架, 用于美元对2美元人口组的多功能对称游戏。 然后, 我们比较我们的方法和一些经典游戏中最先进的方法。 最后, 为了说明我们的方法, 我们在沃尔夫帕克和StarCraft II上进行了实验性游戏理论分析, 两者都涉及复杂的多媒介互动。