Domain-specific quantitative modeling and analysis approaches are fundamental in scenarios in which qualitative approaches are inappropriate or unfeasible. In this paper, we present a tool-supported approach to quantitative graph-based security risk modeling and analysis based on attack-defense trees. Our approach is based on QFLan, a successful domain-specific approach to support quantitative modeling and analysis of highly configurable systems, whose domain-specific components have been decoupled to facilitate the instantiation of the QFLan approach in the domain of graph-based security risk modeling and analysis. Our approach incorporates distinctive features from three popular kinds of attack trees, namely enhanced attack trees, capabilities-based attack trees and attack countermeasure trees, into the domain-specific modeling language. The result is a new framework, called RisQFLan, to support quantitative security risk modeling and analysis based on attack-defense diagrams. By offering either exact or statistical verification of probabilistic attack scenarios, RisQFLan constitutes a significant novel contribution to the existing toolsets in that domain. We validate our approach by highlighting the additional features offered by RisQFLan in three illustrative case studies from seminal approaches to graph-based security risk modeling analysis based on attack trees.


翻译:在定性方法不适当或不可行的情况下,具体领域的定量建模和分析方法至关重要,因为在定性方法不适当或不可行的情况下,这些具体领域的定量建模和分析方法至关重要。在本文件中,我们提出了一个基于攻击性防御树的定量图表安全风险建模和分析工具支持方法,我们的方法以QFLan为基础,这是支持高度可配置系统定量建模和分析的成功领域特有方法,其具体领域的构件已经脱钩,以便在基于图表的安全风险建模和分析领域促进QFLan方法的即时化。我们的方法将三种受欢迎的攻击树的特征,即强化攻击树、以能力为基础的攻击树和攻击性对抗性攻击树,纳入了具体领域的建模语言。结果是一个新的框架,称为RisQFlaan,以支持以攻击性防御性图为基础的数量安全风险建模和分析。通过精确或统计性核查概率攻击情景,RisQFlaan是对该领域现有工具的重大新贡献。我们确认我们的方法,在基于攻击性树的三种示性研究中,突出里卡·卡兰在基于半数值的三次袭击性研究中提供的额外模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
42+阅读 · 2020年12月18日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月17日
Towards Risk Modeling for Collaborative AI
Arxiv
0+阅读 · 2021年3月12日
Arxiv
0+阅读 · 2021年3月12日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员