Instance ranking problems intend to recover the true ordering of the instances in a data set with a variety of applications in for example scientific, social and financial contexts. Robust statistics studies the behaviour of estimators in the presence of perturbations of the data resp. the underlying distribution and provides different concepts to characterize local and global robustness. In this work, we concentrate on the global robustness of parametric ranking problems in terms of the breakdown point which measures the fraction of samples that need to be perturbed in order to let the estimator take unreasonable values. However, existing breakdown point notions do not cover ranking problems so far. We propose to define a breakdown of the estimator as a sign-reversal of all components which causes the predicted ranking to be inverted, therefore we call our concept the order-inversal breakdown point (OIBDP). We will study the OIBDP, based on a linear model, for several different ranking problems that we carefully distinguish and provide least favorable outlier configurations, characterizations of the order-inversal breakdown point as well as sharp asymptotic upper bounds. We also outline the case of SVM-type ranking estimators.
翻译:样例排名问题旨在恢复数据集中各种应用实例的真正顺序,例如科学、社会和金融背景。强有力的统计数据研究估算者在数据折射时的行为,研究基本分布,并提供不同概念来说明当地和全球的稳健性。在这项工作中,我们集中研究分级问题的全球稳健性,分级点用来测量需要渗透的样品的分数,以便让估计者采用不合理的价值。然而,现有的分级点概念目前不包括排名问题。我们提议将估计值的分解定义为导致预测的排名被颠倒的所有组成部分的符号反转,因此我们称我们的概念为顺序反向分级点。我们将根据线性模型研究OIBDP,研究我们仔细区分并提供最不利外差配置的若干不同的分级问题,对分级点的定性,以及精确的中值上限。我们还将研究SVIBDP的分级模型。