We present a simple algorithm that perfectly samples configurations from the unique Gibbs measure of a spin system on a potentially infinite graph $G$. The sampling algorithm assumes strong spatial mixing together with subexponential growth of $G$. It produces a finite window onto a perfect sample from the Gibbs distribution. The run-time is linear in the size of the window.
翻译:我们提出了一个简单的算法,它完美地从一个可能无限的图形$G$的旋转系统的独特 Gibbs 测量器中进行样本配置。 取样算法假设了强大的空间混合和亚爆炸性增长的$G$。 它从Gibbs分布中生成一个有限的窗口, 进入一个完美的样本。运行时间是窗口大小的线性。