Multivariate measurements taken at different spatial locations occur frequently in practice. Proper analysis of such data needs to consider not only dependencies on-sight but also dependencies in and in-between variables as a function of spatial separation. Spatial Blind Source Separation (SBSS) is a recently developed unsupervised statistical tool that deals with such data by assuming that the observable data is formed by a linear latent variable model. In SBSS the latent variable is assumed to be constituted by weakly stationary random fields which are uncorrelated. Such a model is appealing as further analysis can be carried out on the marginal distributions of the latent variables, interpretations are straightforward as the model is assumed to be linear, and not all components of the latent field might be of interest which acts as a form of dimension reduction. The weakly stationarity assumption of SBSS implies that the mean of the data is constant for all sample locations, which might be too restricting in practical applications. Therefore, an adaptation of SBSS that uses scatter matrices based on differences was recently suggested in the literature. In our contribution we formalize these ideas, suggest an adapted SBSS method and show its usefulness on synthetic and real data.


翻译:在不同空间地点进行的多变量测量在实践中经常发生。对这些数据的适当分析不仅需要考虑到视线上的依赖性,而且还需要考虑到变量和变量之间的依赖性,作为空间分离的一种函数。空间盲源分离(SBSS)是最近开发的一种不受监督的统计工具,它通过假定可观测数据是由线性潜伏变量模型构成而处理这些数据。在SBSS中,潜在变量假定是由不相干、不固定的随机字段构成的。这种模型具有吸引力,因为可以对潜在变量的边际分布进行进一步分析,解释是直截了当的,因为模型被假定为线性,而不是潜在领域的所有组成部分都可能具有兴趣,作为减少尺寸的一种形式。SBSS的薄弱定位假设意味着,所有抽样地点的数据的平均值都是不变的,这在实际应用中可能过于有限。因此,最近文献中建议对SBS进行适应,根据差异使用撒布矩阵。我们将这些想法正规化,我们建议采用一种经过调整的SBSS方法,并显示其对于合成和真实数据的有用性。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2019年8月19日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
3+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员