In the Priority Steiner Tree (PST) problem, we are given an undirected graph $G=(V,E)$ with a source $s \in V$ and terminals $T \subseteq V \setminus \{s\}$, where each terminal $v \in T$ requires a nonnegative priority $P(v)$. The goal is to compute a minimum weight Steiner tree containing edges of varying rates such that the path from $s$ to each terminal $v$ consists of edges of rate greater than or equal to $P(v)$. The PST problem with $k$ priorities admits a $\min\{2 \ln |T| + 2, k\rho\}$-approximation [Charikar et al., 2004], and is hard to approximate with ratio $c \log \log n$ for some constant $c$ [Chuzhoy et al., 2008]. In this paper, we first strengthen the analysis provided by [Charikar et al., 2004] for the $(2 \ln |T| + 2)$-approximation to show an approximation ratio of $\lceil \log_2 |T| \rceil + 1 \le 1.443 \ln |T| + 2$, then provide a very simple, parallelizable algorithm which achieves the same approximation ratio. We then consider a more difficult node-weighted version of the PST problem, and provide a $(2 \ln |T|+2)$-approximation using extensions of the spider decomposition by [Klein \& Ravi, 1995]. This is the first result for the PST problem in node-weighted graphs. Moreover, the approximation ratios for all above algorithms are tight.


翻译:Steiner Tree (PST) 优先 问题中, 我们被给出一个未引导的图形 $G= (V,E), 资源为 $ = (V), 终端为 $T\ subseteq V ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ $, 每个终端$v 需要非负优先 $ P(v) 。 目标是计算一个最小的重量 Steiner 树, 包含不同比率, 从而路径由高于或等于 $(V) 的顺位率边缘组成。 美元优先级的 PST = 2 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Msfvenom 常用生成 Payload 命令
黑白之道
9+阅读 · 2019年2月23日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
已删除
将门创投
3+阅读 · 2018年6月20日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月19日
VIP会员
相关VIP内容
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Msfvenom 常用生成 Payload 命令
黑白之道
9+阅读 · 2019年2月23日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
已删除
将门创投
3+阅读 · 2018年6月20日
Top
微信扫码咨询专知VIP会员