This paper presents a new model-free algorithm for episodic finite-horizon Markov Decision Processes (MDP), Adaptive Multi-step Bootstrap (AMB), which enjoys a stronger gap-dependent regret bound. The first innovation is to estimate the optimal $Q$-function by combining an optimistic bootstrap with an adaptive multi-step Monte Carlo rollout. The second innovation is to select the action with the largest confidence interval length among admissible actions that are not dominated by any other actions. We show when each state has a unique optimal action, AMB achieves a gap-dependent regret bound that only scales with the sum of the inverse of the sub-optimality gaps. In contrast, Simchowitz and Jamieson (2019) showed all upper-confidence-bound (UCB) algorithms suffer an additional $\Omega\left(\frac{S}{\Delta_{min}}\right)$ regret due to over-exploration where $\Delta_{min}$ is the minimum sub-optimality gap and $S$ is the number of states. We further show that for general MDPs, AMB suffers an additional $\frac{|Z_{mul}|}{\Delta_{min}}$ regret, where $Z_{mul}$ is the set of state-action pairs $(s,a)$'s satisfying $a$ is a non-unique optimal action for $s$. We complement our upper bound with a lower bound showing the dependency on $\frac{|Z_{mul}|}{\Delta_{min}}$ is unavoidable for any consistent algorithm. This lower bound also implies a separation between reinforcement learning and contextual bandits.


翻译:本文展示了一个新的无模型算法, 用于 Acssodic Limit- horizon Markov 决断进程( MDP), 适应性多步制导(AMB), 具有更强的偏差和依赖差的悔恨。 第一项创新是通过将乐观的靴子与适应性多步的蒙特卡洛的推出组合, 来估计最优的 Q美元 。 第二个创新是选择在不为任何其他动作所支配的可受理行动中具有最大置信间隔的动作。 我们显示, 当每个国家有独特的最佳行动时, AMB( MDP) 获得一个取决于差数的遗憾, 只有与亚最佳差差差之和相比, AMB( 2019) 和 Jamison (2019) 显示, 所有的上限(UCB) 算法都会受到额外的 $(megale) left) (\\\\\ Delta\\\\ min\ min\\\\\\\ right) right) 很遗憾, 因为过度的爆炸, $ (D) 任何亚值的亚值是最小的基值差距差距差距差距, 美元, 美元, 美元是最小的最小值(美元) 美元) 和美元。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月5日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员