The minimum circuit size problem (MCSP) is a string compression problem with a parameter $s$ in which, given the truth table of a Boolean function over inputs of length $n$, one must answer whether it can be computed by a Boolean circuit of size at most $s(n) \ge n$. Recently, McKay, Murray, and Williams (STOC, 2019) proved a hardness magnification result for MCSP involving (one-pass) streaming algorithms: For any reasonable $s$, if there is no $\mathsf{poly}(s(n))$-space streaming algorithm with $\mathsf{poly}(s(n))$ update time for $\mathsf{MCSP}[s]$, then $\mathsf{P} \neq \mathsf{NP}$. We prove an analogous result for the (provably) strictly less capable model of shrinking cellular automata (SCAs), which are cellular automata whose cells can spontaneously delete themselves. We show every language accepted by an SCA can also be accepted by a streaming algorithm of similar complexity, and we identify two different aspects in which SCAs are more restricted than streaming algorithms. We also show there is a language which cannot be accepted by any SCA in $o(n / \log n)$ time, even though it admits an $O(\log n)$-space streaming algorithm with $O(\log n)$ update time.
翻译:最小电路大小问题( MCSP) 是参数 $ 的串列压缩问题, 其中, 鉴于布林函数在输入长度为 $n 美元 的真伪表格, 人们必须回答是否可以用布林电路来计算, 最多为 $( n)\ ge n$。 最近, 麦凯、 默里 和 Williams ( STOC, 2019) 证明了 MSP ( STOC, 2019) 包含 (一通) 流算法的硬度放大结果 : 对于任何合理的 $ 美元 来说, 如果没有 $\ maths{poly} (s) $- spole 流动算法, 则使用 $\ mathfs f{ MCSP} (n) 美元 。 最近, McKASA 也无法接受每个版本的复杂程度( ASA) 。