Robust optimization is becoming increasingly important in machine learning applications. In this paper, we study a unified framework of robust submodular optimization. We study this problem both from a minimization and maximization perspective (previous work has only focused on variants of robust submodular maximization). We do this under a broad range of combinatorial constraints including cardinality, knapsack, matroid as well as graph-based constraints such as cuts, paths, matchings and trees. Furthermore, we also study robust submodular minimization and maximization under multiple submodular upper and lower bound constraints. We show that all these problems are motivated by important machine learning applications including robust data subset selection, robust co-operative cuts and robust co-operative matchings. In each case, we provide scalable approximation algorithms and also study hardness bounds. Finally, we empirically demonstrate the utility of our algorithms on synthetic data, and real-world applications of robust cooperative matchings for image correspondence, robust data subset selection for speech recognition, and image collection summarization with multiple queries.
翻译:在机器学习应用中,强力优化正在变得日益重要。在本文中,我们研究一个强力子模块优化的统一框架。我们从最小化和最大化的角度来研究这一问题(以前的工作仅侧重于强力子模块最大化的变体 ) 。我们在一系列广泛的组合制约下这样做,这些制约包括基质、Knapsack、机器人以及基于图形的制约,如切割、路径、匹配和树木。此外,我们还在多个子模块上下约束下约束下研究强力子模块最小化和最大化问题。我们表明,所有这些问题都是由重要的机器学习应用驱动的,包括强力数据子选择、强力合作削减和强力合作匹配。在每种情况下,我们提供可缩放的近似算法,并研究硬性界限。 最后,我们从经验上展示了我们的合成数据算法的效用,以及在图像通信中进行强力合作匹配的实际应用,为语音识别进行强力的数据子选择,以及用多个查询对图像进行汇总。