Retrieval-Augmented Generation (RAG) systems enhance large language models (LLMs) by integrating external knowledge sources, enabling more accurate and contextually relevant responses tailored to user queries. However, these systems remain vulnerable to corpus poisoning attacks that can significantly degrade LLM performance through the injection of malicious content. To address these challenges, we propose TrustRAG, a robust framework that systematically filters compromised and irrelevant contents before they are retrieved for generation. Our approach implements a two-stage defense mechanism: At the first stage, it employs K-means clustering to identify potential attack patterns in retrieved documents using cosine similarity and ROUGE metrics as guidance, effectively isolating suspicious content. Secondly, it performs a self-assessment which detects malicious documents and resolves discrepancies between the model's internal knowledge and external information. TrustRAG functions as a plug-and-play, training-free module that integrates seamlessly with any language model, whether open or closed-source. In addition, TrustRAG maintains high contextual relevance while strengthening defenses against corpus poisoning attacks. Through extensive experimental validation, we demonstrate that TrustRAG delivers substantial improvements in retrieval accuracy, efficiency, and attack resistance compared to existing approaches across multiple model architectures and datasets. We have made TrustRAG available as open-source software at \url{https://github.com/HuichiZhou/TrustRAG}.
翻译:暂无翻译