The vision-based grasp detection method is an important research direction in the field of robotics. However, due to the rectangle metric of the grasp detection rectangle's limitation, a false-positive grasp occurs, resulting in the failure of the real-world robot grasp task. In this paper, we propose a novel generative convolutional neural network model to improve the accuracy and robustness of robot grasp detection in real-world scenes. First, a Gaussian-based guided training method is used to encode the quality of the grasp point and grasp angle in the grasp pose, highlighting the highest-quality grasp point position and grasp angle and reducing the generation of false-positive grasps. Simultaneously, deformable convolution is used to obtain the shape features of the object in order to guide the subsequent network to the position. Furthermore, a global-local feature fusion method is introduced in order to efficiently obtain finer features during the feature reconstruction stage, allowing the network to focus on the features of the grasped objects. On the Cornell Grasping Datasets and Jacquard Datasets, our method achieves excellent performance of 99.0$\%$ and 95.9$\%$, respectively. Finally, the proposed method is put to the test in a real-world robot grasping scenario.
翻译:在机器人领域,基于视觉的抓取探测方法是一个重要的研究方向。然而,由于对抓取探测矩形的限制的矩形指标,出现了一种不正的把握,导致真实世界机器人的抓取任务失败。在本文件中,我们提出了一个新型的遗传进化神经网络模型,以提高机器人在现实世界的场景中抓取探测的准确性和稳健性。首先,以高山为基础的指导培训方法,用于将抓取点和抓取角度的质量编码在握取位置上,突出最高质量的抓取点位置和抓取角度,并减少产生虚假的抓取。同时,使用变形变形变形变形来获得物体的形状特征,以指导随后的网络定位。此外,还采用了一种全球-地方特征融合方法,以便在地貌重建阶段有效地获得更精细的特征,使网络能够侧重于被抓住物体的特征。在Cornell Grassing Datatset和Jacurd Dataset上,我们的方法达到了最优秀的抓取点位置和抓取角度。同时,使用变形变形变形变形变形变形变形变形变形变形变形变形变形的变形变形变形变形变形变形模型的方法,以99美元为真实的机器人,最后为真实的机器人,最后是10美元和95.9%-9 和95-10美元 和10-10