We investigate practical algorithms for inconsistency-tolerant query answering over prioritized knowledge bases, which consist of a logical theory, a set of facts, and a priority relation between conflicting facts. We consider three well-known semantics (AR, IAR and brave) based upon two notions of optimal repairs (Pareto and completion). Deciding whether a query answer holds under these semantics is (co)NP-complete in data complexity for a large class of logical theories, and SAT-based procedures have been devised for repair-based semantics when there is no priority relation, or the relation has a special structure. The present paper introduces the first SAT encodings for Pareto- and completion-optimal repairs w.r.t. general priority relations and proposes several ways of employing existing and new encodings to compute answers under (optimal) repair-based semantics, by exploiting different reasoning modes of SAT solvers. The comprehensive experimental evaluation of our implementation compares both (i) the impact of adopting semantics based on different kinds of repairs, and (ii) the relative performances of alternative procedures for the same semantics.
翻译:我们根据两个最佳修理概念(Pareto和完成),研究用于解答不一致性问题的实际算法,回答优先知识基础,包括逻辑理论、一系列事实和相互冲突的事实之间的优先关系。我们考虑三个众所周知的语义(AR、IAR和勇敢),根据三个最佳修理概念(Pareto和完成),我们考虑三个众所周知的语义(AR、IAR和勇敢)。决定根据这些语义(Pareto和完成),一个答案是否具有(共同)对于一大批逻辑理论的数据复杂程度,NP是完整的,而基于SAT的程序是为了在没有优先关系或关系具有特殊结构的情况下进行修复的语义。本文介绍了Pareto-和完成-最优化修理的第一个SAT编码,并提出了使用现有和新的编码在(最佳)基于修复的语义下计算答案的几种方法,方法是利用SAT解析器的不同推理模式,对我们的实施进行了全面的实验性评价:(一)采用基于不同类型修理的语义的影响,以及(二)对同一语义的替代程序的相对性表现。