In this paper, a Quadrature by Two Expansions (QB2X) numerical integration technique is developed for the single and double layer potentials of the Helmholtz equation in two dimensions. The QB2X method uses both local complex Taylor expansions and plane wave type expansions to achieve a resulting representation which is numerically accurate for all target points (interior, exterior, or exactly on the boundary) inside a leaf box in the fast multipole method (FMM) hierarchical tree structure. Compared to the original Quadrature by Expansion (QBX) method, the QB2X method explicitly includes the nonlinearity from the boundary geometry in the plane wave expansions, thereby providing for higher order representations of both the boundary geometry and density functions in the integrand, with its convergence following standard FMM error analysis. Numerical results are presented to demonstrate the performance of the QB2X method for Helmholtz layer potentials and its comparison with the original QBX method for both flat and curved boundaries with various densities. The QB2X method overcomes the challenges of the original QBX method, and is better suited for efficient solutions of the Helmholtz equation with complex geometries.
翻译:本文为Helmholtz等式的单层和双层潜力的两个维度开发了“两个扩展(QB2X)”数字集成技术。QB2X方法使用局部复杂的泰勒扩张和平面波浪类型的扩张,以实现由此得出的表示,对于快速多极方法(FMM)树层结构中的叶盒内的所有目标点(内、外或完全在边界上)都具有数字精确度。与最初的扩展(QBX)方法的夸度(QBX)相比,QB2X方法明确包括平面波扩张中边界几何学的非直线性,从而对正方形中的边界几何和密度功能提供更高顺序的表示,并遵循标准的FMM误差分析。提出了数值结果,以显示Helmholtz层潜力的QB2X方法的性能,以及它与最初和弯曲边界与各种密度的QBX方法的原QBX方法的对比。他使用的原方形方程式和方程式的更适合的方形方法克服了各种硬方方形的难题。