Context: Mutation Testing (MT) is an important tool in traditional Software Engineering (SE) white-box testing. It aims to artificially inject faults in a system to evaluate a test suite's capability to detect them, assuming that the test suite defects finding capability will then translate to real faults. If MT has long been used in SE, it is only recently that it started gaining the attention of the Deep Learning (DL) community, with researchers adapting it to improve the testability of DL models and improve the trustworthiness of DL systems. Objective: If several techniques have been proposed for MT, most of them neglected the stochasticity inherent to DL resulting from the training phase. Even the latest MT approaches in DL, which propose to tackle MT through a statistical approach, might give inconsistent results. Indeed, as their statistic is based on a fixed set of sampled training instances, it can lead to different results across instances set when results should be consistent for any instance. Methods: In this work, we propose a Probabilistic Mutation Testing (PMT) approach that alleviates the inconsistency problem and allows for a more consistent decision on whether a mutant is killed or not. Results: We show that PMT effectively allows a more consistent and informed decision on mutations through evaluation using three models and eight mutation operators used in previously proposed MT methods. We also analyze the trade-off between the approximation error and the cost of our method, showing that relatively small error can be achieved for a manageable cost. Conclusion: Our results showed the limitation of current MT practices in DNN and the need to rethink them. We believe PMT is the first step in that direction which effectively removes the lack of consistency across test executions of previous methods caused by the stochasticity of DNN training.


翻译:在传统软件工程(SE) 白箱测试中, 磁性测试( MT) 是一个重要的工具。 它旨在人为地在测试套件检测能力评估系统中输入错误, 假设测试套件发现缺陷的能力会转化成真正的错误。 如果测试套件发现能力在SE中长期使用, 只是最近它才开始获得深层学习(DL)社区的注意, 研究人员调整它来提高 DL 模型的可测试性, 并提高 DL 系统的信任度。 目标 : 如果为MT 提出了几种技术, 其中多数技术忽视了 DL 所固有的检测能力。 甚至DL 中最新的MT 方法( 提议通过统计方法处理 MT ) 可能会产生不一致的结果 。 事实上, 它们的统计依据是一套固定的抽样培训实例, 研究人员可以对它进行调整, 提高 DL 模型的可提高 DL 的可测试效果。 方法: 我们通过这项工作, 提出了一种可稳定性测试( PMT) 方法, 从而减轻当前不一致性问题, 并允许一种更精确的操作者 。

0
下载
关闭预览

相关内容

机器翻译,又称为自动翻译,是利用计算机将一种自然语言(源语言)转换为另一种自然语言(目标语言)的过程。它是计算语言学的一个分支,是人工智能的终极目标之一,具有重要的科学研究价值。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员