Recently, advances in differential volumetric rendering enabled significant breakthroughs in the photo-realistic and fine-detailed reconstruction of complex 3D scenes, which is key for many virtual reality applications. However, in the context of augmented reality, one may also wish to effect semantic manipulations or augmentations of objects within a scene. To this end, we propose a volumetric framework for (i) disentangling or separating, the volumetric representation of a given foreground object from the background, and (ii) semantically manipulating the foreground object, as well as the background. Our framework takes as input a set of 2D masks specifying the desired foreground object for training views, together with the associated 2D views and poses, and produces a foreground-background disentanglement that respects the surrounding illumination, reflections, and partial occlusions, which can be applied to both training and novel views. Our method enables the separate control of pixel color and depth as well as 3D similarity transformations of both the foreground and background objects. We subsequently demonstrate the applicability of our framework on a number of downstream manipulation tasks including object camouflage, non-negative 3D object inpainting, 3D object translation, 3D object inpainting, and 3D text-based object manipulation. Full results are given in our project webpage at https://sagiebenaim.github.io/volumetric-disentanglement/
翻译:最近,不同体积的改进使得对复杂的3D场景进行摄影现实和细细细致的重建取得了重大突破,这是许多虚拟现实应用的关键。然而,在扩大现实的背景下,人们可能还希望对一个场景中的物体进行语义操纵或放大。为此,我们提议一个体积框架,用于(一) 调离或分离,从背景中分离给定的地表对象的体积代表,以及(二) 以语义方式对地表对象和背景物体进行表面和细细细的调整。我们的框架输入一套2D面罩,具体说明培训视图所需的前表层对象,以及相关的 2D 视图和布局,并产生一个地表- 地表- 地貌分立, 尊重周围的污点、 反射和部分封闭, 既适用于培训和新观点。我们的方法使得平面/深度的色和表面对象以及背景对象的3D 相异性变异。我们随后在3D 的图象- 3D 目标的图象- 上展示了我们框架在3D 的图象- 3D 的图象- 的图象- 的图象- 的图像- 的图象- 的图象- 3D 的图象- 的图象- 3D 的图象- 的图象- 的图象- 的图象- 的图象- 的图案