Unconstrained Image generation with high realism is now possible using recent Generative Adversarial Networks (GANs). However, it is quite challenging to generate images with a given set of attributes. Recent methods use style-based GAN models to perform image editing by leveraging the semantic hierarchy present in the layers of the generator. We present Few-shot Latent-based Attribute Manipulation and Editing (FLAME), a simple yet effective framework to perform highly controlled image editing by latent space manipulation. Specifically, we estimate linear directions in the latent space (of a pre-trained StyleGAN) that controls semantic attributes in the generated image. In contrast to previous methods that either rely on large-scale attribute labeled datasets or attribute classifiers, FLAME uses minimal supervision of a few curated image pairs to estimate disentangled edit directions. FLAME can perform both individual and sequential edits with high precision on a diverse set of images while preserving identity. Further, we propose a novel task of Attribute Style Manipulation to generate diverse styles for attributes such as eyeglass and hair. We first encode a set of synthetic images of the same identity but having different attribute styles in the latent space to estimate an attribute style manifold. Sampling a new latent from this manifold will result in a new attribute style in the generated image. We propose a novel sampling method to sample latent from the manifold, enabling us to generate a diverse set of attribute styles beyond the styles present in the training set. FLAME can generate diverse attribute styles in a disentangled manner. We illustrate the superior performance of FLAME against previous image editing methods by extensive qualitative and quantitative comparisons. FLAME also generalizes well on multiple datasets such as cars and churches.
翻译:使用最新的 Generation Adversarial 网络( GANs) 来生成具有特定属性的图像,现在有可能使用最新的 GAN 模式。 但是, 使用最近的方法使用基于样式的 GAN 模型来进行图像编辑, 利用生成器层中存在的语义等级结构进行编辑。 我们展示了少量的 Lenttent 基于属性的调控和编辑( FLAME ), 这是一个简单而有效的框架, 以便通过隐蔽的空间操作来进行高度控制的图像编辑。 具体地说, 我们估计了( 预先训练过的 StyleGAN ) 潜在空间的线性方向, 控制生成的图像的语义。 与以前使用大型属性标签数据集的 GAN 模型相比, 使用基于样式的 GAN 模型的 GAN 模型来进行图像编辑; FL 使用最小的监管, 来估计不相干的编辑方向 。 FLAME 可以在保存身份的同时以高度精确的方式进行个人和顺序编辑 。 此外, 我们提出一个新式样式的变式调调调调调, 我们首先将一个高级的Frediploral 格式的图像的图像用于。