In this paper, a new search technique based on the virus optimisation algorithm is proposed for calculating the neighbours of binary self-dual codes. The aim of this new technique is to calculate neighbours of self-dual codes without reducing the search field in the search process (this is a known in the literature approach due to the computational time constraint) but still obtaining results in a reasonable time (significantly faster when compared to the standard linear computational search). We employ this new search algorithm to the well-known neighbour method and its extension, the $k^{th}$-range neighbours and search for binary $[72,36,12]$ self-dual codes. In particular, we present six generator matrices of the form $[I_{36} \ | \ \tau_6(v)],$ where $I_{36}$ is the $36 \times 36$ identity matrix, $v$ is an element in the group matrix ring $M_6(\mathbb{F}_2)G$ and $G$ is a finite group of order 6, which we then employ to the proposed algorithm and search for binary $[72,36,12]$ self-dual codes directly over the finite field $\mathbb{F}_2$. We construct 1471 new Type I binary $[72, 36, 12]$ self-dual codes with the rare parameters $\gamma=11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32$ in their weight enumerators.


翻译:在本文中,基于病毒优化算法的新搜索技术被提出来用于计算二进制自体代码的邻居。 这一新技术的目的是计算自体代码的邻居而不减少搜索过程的搜索字段( 这是文献方法中由于计算时间的限制而知道的), 但仍在合理的时间内取得结果( 与标准的线性计算搜索相比, 速度要快得多 ) 我们使用这种新的搜索算法来计算众所周知的邻居方法及其扩展, $k_th} 的近邻, 并搜索二进制自体代码 $( 472, 36, 12) 。 我们用6个发电机矩阵矩阵, $( 272, 12), $( 272), 美元, 美元, 美元, 美元 美元, 美元 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元,

0
下载
关闭预览

相关内容

【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
25+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Arxiv
0+阅读 · 2021年11月4日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
0+阅读 · 2021年11月2日
Arxiv
0+阅读 · 2021年11月2日
Arxiv
0+阅读 · 2021年11月2日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
25+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
相关资讯
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Top
微信扫码咨询专知VIP会员