Estimating the rank of a corrupted data matrix is an important task in data analysis, most notably for choosing the number of components in PCA. Significant progress on this task was achieved using random matrix theory by characterizing the spectral properties of large noise matrices. However, utilizing such tools is not straightforward when the data matrix consists of count random variables, e.g., Poisson, in which case the noise can be heteroskedastic with an unknown variance in each entry. In this work, we consider a Poisson random matrix with independent entries, and propose a simple procedure termed \textit{biwhitening} for estimating the rank of the underlying signal matrix (i.e., the Poisson parameter matrix) without any prior knowledge. Our approach is based on the key observation that one can scale the rows and columns of the data matrix simultaneously so that the spectrum of the corresponding noise agrees with the standard Marchenko-Pastur (MP) law, justifying the use of the MP upper edge as a threshold for rank selection. Importantly, the required scaling factors can be estimated directly from the observations by solving a matrix scaling problem via the Sinkhorn-Knopp algorithm. Aside from the Poisson, our approach is extended to families of distributions that satisfy a quadratic relation between the mean and the variance, such as the generalized Poisson, binomial, negative binomial, gamma, and many others. This quadratic relation can also account for missing entries in the data. We conduct numerical experiments that corroborate our theoretical findings, and showcase the advantage of our approach for rank estimation in challenging regimes. Furthermore, we demonstrate the favorable performance of our approach on several real datasets of single-cell RNA sequencing (scRNA-seq), High-Throughput Chromosome Conformation Capture (Hi-C), and document topic modeling.
翻译:估算腐败数据矩阵的排名是数据分析中的一项重要任务,最突出的是选择五氯苯甲醚组件数量的任务。 使用随机矩阵理论,通过描述大型噪音矩阵的光谱属性,实现了任务的重大进展。 但是,当数据矩阵由随机变量组成时,使用这些工具并不简单,例如Poisson,在这种情况下,噪音可能是扭曲的,每个条目的差别未知。 在这项工作中,我们考虑的是配有独立条目的Poisson随机矩阵,并提议了一个简单的程序,称为\ textit{NAwhite},用于在没有事先任何知识的情况下估算基底信号矩阵(即 Poisson 参数矩阵矩阵矩阵矩阵矩阵)的级别。 但是,我们的方法基于的关键观察,即数据矩阵的行距可以同时缩放随机变量变量变量变量,从而让相应的噪音的频谱与标准 Marchenko-Pastur(MP) 法律一致, 将MP 的上端端端端点用作选择等级的门槛值( ) 。 关键是, 通过观察来直接估算所需的缩缩缩缩缩缩缩图, 通过Sinkmodeal 直系的直系的直径直径, 直径, 直系的直径, 直系的直径, 直系的运行, 直系的运行, 直系的运行的运行的运行的运行的运行的运行的运行的运行的运行, 直系, 直系的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行的运行, 直, 直路, 直系的运行端的运行, 直系的运行的运行端的运行的运行的运行的运行的运行的运行。