Anomaly detection in images plays a significant role for many applications across all industries, such as disease diagnosis in healthcare or quality assurance in manufacturing. Manual inspection of images, when extended over a monotonously repetitive period of time is very time consuming and can lead to anomalies being overlooked.Artificial neural networks have proven themselves very successful on simple, repetitive tasks, in some cases even outperforming humans. Therefore, in this paper we investigate different methods of deep learning, including supervised and unsupervised learning, for anomaly detection applied to a quality assurance use case. We utilize the MVTec anomaly dataset and develop three different models, a CNN for supervised anomaly detection, KD-CAE for autoencoder anomaly detection, NI-CAE for noise induced anomaly detection and a DCGAN for generating reconstructed images. By experiments, we found that KD-CAE performs better on the anomaly datasets compared to CNN and NI-CAE, with NI-CAE performing the best on the Transistor dataset. We also implemented a DCGAN for the creation of new training data but due to computational limitation and lack of extrapolating the mechanics of AnoGAN, we restricted ourselves just to the generation of GAN based images. We conclude that unsupervised methods are more powerful for anomaly detection in images, especially in a setting where only a small amount of anomalous data is available, or the data is unlabeled.


翻译:图像中的异常探测在所有行业的许多应用中都起着重要作用,例如医疗护理或生产质量保证中的疾病诊断; 人工图像检查,如果在单重复的一段时间里延长,则需要花费很多时间,并可能导致忽视异常现象。 人工神经网络证明自己在简单重复的任务方面非常成功,在某些情况下甚至表现优异的人。 因此,在本文件中,我们调查了深度学习的不同方法,包括监督和不受监督的学习,以便在质量保证使用的情况下应用异常现象检测。 我们还利用MVTec异常数据集,开发了三种不同的模型,即CNN用于监管异常检测的CNN、KD-CAE用于自动编码异常检测的KD-CAE、NI-CAE用于噪音诱发异常检测的NI-CAE和DCGAN用于生成重建图像的DCGAN。我们通过实验发现KD-CAE在异常数据集上的表现比CNN和NI-CAAE更好地表现,NICE在透明数据集中做得最好。 我们还安装了DCGAN来创建新的培训数据,但是由于计算出不严格的限制和缺乏超强的GAN图像。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
16+阅读 · 2021年3月2日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员