Abnormal states in deep reinforcement learning~(RL) are states that are beyond the scope of an RL policy. Such states may make the RL system unsafe and impede its deployment in real scenarios. In this paper, we propose a simple yet effective anomaly detection framework for deep RL algorithms that simultaneously considers random, adversarial and out-of-distribution~(OOD) state outliers. In particular, we attain the class-conditional distributions for each action class under the Gaussian assumption, and rely on these distributions to discriminate between inliers and outliers based on Mahalanobis Distance~(MD) and Robust Mahalanobis Distance. We conduct extensive experiments on Atari games that verify the effectiveness of our detection strategies. To the best of our knowledge, we present the first in-detail study of statistical and adversarial anomaly detection in deep RL algorithms. This simple unified anomaly detection paves the way towards deploying safe RL systems in real-world applications.
翻译:超常状态 深强化学习 ~ (RL) 是超出 RL 政策范围的状态 。 这样的状态可能会使 RL 系统不安全, 并阻碍其在真实情况下的部署 。 在本文中, 我们为深RL 算法提出一个简单而有效的异常检测框架, 同时考虑随机、 对抗性和分配外 ~ (OOOD) 状态外 。 特别是, 我们根据 Gaussian 假设, 获得每个行动组的等级条件分布, 并依靠这些分布来区分基于 Mahalanobis 距离~ (MD) 和 Robust Mahalanobis 距离的 异端点和异端点 。 我们在 Atari 游戏上进行了广泛的实验, 以验证我们的检测策略的有效性 。 我们据我们所知, 第一次在深 RL 算法中进行统计和对抗性异常现象检测。 这种简单统一的异常点探测为在现实应用中部署安全 RL 系统铺平铺平了道路 。