We propose iterative projection methods for solving square or rectangular consistent linear systems Ax = b. Existing projection methods use sketching matrices (possibly randomized) to generate a sequence of small projected subproblems, but even the smaller systems can be costly. We develop a process that appends one column to the sketching matrix each iteration and converges in a finite number of iterations whether the sketch is random or deterministic. In general, our process generates orthogonal updates to the approximate solution xk. By choosing the sketch to be the set of all previous residuals, we obtain a simple recursive update and convergence in at most rank(A) iterations (in exact arithmetic). By choosing a sequence of identity columns for the sketch, we develop a generalization of the Kaczmarz method. In experiments on large sparse systems, our method (PLSS) with residual sketches is competitive with LSQR and LSMR, and with residual and identity sketches compares favorably with state-of-the-art randomized methods.
翻译:我们提出了解决平方或长方一致线性系统Ax=b的迭代预测方法。现有的预测方法使用草图矩阵(可能随机化)来产生一个小预测子问题序列,但即使较小系统也可能费用高昂。我们开发了一个过程,将一列附加在草图矩阵中,每个迭代和以一定的迭代(无论草图是随机的还是确定性的)聚合在一起。一般来说,我们的程序生成了近似溶液xk的正方位更新。通过选择草图作为所有以往遗留物的组合,我们获得了最高级(A)迭代的简单循环更新和趋同(精确的算术)。我们通过为草图选择一个身份列序列,我们开发了卡兹马尔兹法的概括性。在大型稀疏系统实验中,我们使用残余草图的方法(PRSS)与LSQR和LSMR具有竞争力,而剩余和身份草图则与最先进的随机方法相比优。