Nowadays, many people worldwide suffer from brain disorders, and their health is in danger. So far, numerous methods have been proposed for the diagnosis of Schizophrenia (SZ) and attention deficit hyperactivity disorder (ADHD), among which functional magnetic resonance imaging (fMRI) modalities are known as a popular method among physicians. This paper presents an SZ and ADHD intelligent detection method of resting-state fMRI (rs-fMRI) modality using a new deep learning (DL) method. The University of California Los Angeles (UCLA) dataset, which contains the rs-fMRI modalities of SZ and ADHD patients, has been used for experiments. The FMRIB software library (FSL) toolbox first performed preprocessing on rs-fMRI data. Then, a convolutional Autoencoder (CNN-AE) model with the proposed number of layers is used to extract features from rs-fMRI data. In the classification step, a new fuzzy method called interval type-2 fuzzy regression (IT2FR) is introduced and then optimized by genetic algorithm (GA), particle swarm optimization (PSO), and gray wolf optimization (GWO) techniques. Also, the results of IT2FR methods are compared with multilayer perceptron (MLP), k-nearest neighbors (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and adaptive neuro-fuzzy inference system (ANFIS) methods. The experiment results show that the IT2FR method with the GWO optimization algorithm has achieved satisfactory results compared to other classifier methods. Finally, the proposed classification technique was able to provide 72.71% accuracy.
翻译:目前,全世界许多人都患有脑紊乱症,他们的健康处于危险之中。到目前为止,已经提出了许多方法来诊断精神分裂症(SZ)和注意力缺失多动性障碍(ADHD),其中功能磁共振成像(fMRI)模式在医生中被称为一种流行的方法。本文介绍了一种SZ和ADHD智能检测方法,用于休息状态的FMRI(rs-fMRI)模式,使用了一种新的深层次学习(DL)方法。加利福尼亚大学洛杉矶(UCLA)数据集,其中包含SZ和ADHD病人的r-fMRI 模式,用于实验。FMRIB软件库(FSL)工具箱首先在rs-fMRI数据上进行预处理。然后,一个具有拟议数的SDUC(r-FMRI)模型用于提取 RS-MRI数据(rFMRI数据支持)。在分类步骤中,一种叫做IFS-2型纤维回归(IT2FRFR) 和ADHD(IT-RMER) 数据(ILS),然后通过遗传算算算法(SL) 和最优化的SLIFILMLILFI(G(G)方法(SLILIL),也显示的SLIFIFIFILL) 和SLIFIFM(S(SOFIG) 方法(S-R),S-FL),采用新的SLILIG) 方法(SLILILILO(SLIG) 方法(S(S(S(S),S), 和SLUFILU),以及S) 方法(SUFMUFMU) 方法(S),S),S-S-S), 和S), 和SLIFLIFLIGFMFMFAFM(SL),以及S), 方法。