Forecasting future states of sensors is key to solving tasks like weather prediction, route planning, and many others when dealing with networks of sensors. But complete spatial coverage of sensors is generally unavailable and would practically be infeasible due to limitations in budget and other resources during deployment and maintenance. Currently existing approaches using machine learning are limited to the spatial locations where data was observed, causing limitations to downstream tasks. Inspired by the recent surge of Graph Neural Networks for spatio-temporal data processing, we investigate whether these can also forecast the state of locations with no sensors available. For this purpose, we develop a framework, named Forecasting Unobserved Node States (FUNS), that allows forecasting the state at entirely unobserved locations based on spatio-temporal correlations and the graph inductive bias. FUNS serves as a blueprint for optimizing models only on observed data and demonstrates good generalization capabilities for predicting the state at entirely unobserved locations during the testing stage. Our framework can be combined with any spatio-temporal Graph Neural Network, that exploits spatio-temporal correlations with surrounding observed locations by using the network's graph structure. Our employed model builds on a previous model by also allowing us to exploit prior knowledge about locations of interest, e.g. the road type. Our empirical evaluation of both simulated and real-world datasets demonstrates that Graph Neural Networks are well-suited for this task.
翻译:预测未来传感器状态是解决天气预测、路线规划等任务的关键,而处理传感器网络时,预测未来传感器状态是解决诸如天气预测、路线规划和其他许多任务的关键。但是,由于部署和维护期间的预算和其他资源有限,传感器的空间覆盖面一般不完全,实际上不可行。目前使用机器学习的方法仅限于观察到数据的空间地点,对下游任务造成限制。受最近用于空间时空数据处理的图形神经网络的激增的启发,我们调查这些网络是否也能预测没有传感器的地点的状况。为此目的,我们开发了一个框架,名为预测未观测的诺德国家(FUNS),该框架允许根据地表-时空相关关系和图的偏差对完全未观测的地点进行预测。FUNS作为优化模型的蓝图,仅对观测到的数据进行优化,并展示在测试阶段完全没有观测到的地点预测状态的良好概括能力。我们的框架可以与任何没有传感器的地点合并在一起。为此,我们开发了一个称为spotio-时空点的网络(FORNS)框架,用以在所观测到的周围位置上完全没有观测到的空点(FORT),从而利用空间-contio-stal recal real recate recate recate recate recent recent recent react react recent recent refact recreal sactal sideal sactus) 和我们使用之前的模型, 利用了网络,并利用了我们使用网络的模型,通过网络的模型,利用了我们使用的模型,通过网络模型和我们使用的模型,从而利用了我们所观测到的图图图图图图。