项目名称: 介孔无机-高分子杂化纳米药物载体的尺寸和形态效应

项目编号: No.51273150

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 黄世文

作者单位: 武汉大学

项目金额: 80万元

中文摘要: 癌症已逐步发展成为威胁人类生命的第一杀手,化疗依然是临床上治疗癌症的最重要手段之一。化疗药物在杀死肿瘤细胞的同时损害健康细胞,造成毒副作用。纳米技术为肿瘤化疗带来新的思路和突破,纳米载体促进了药物在肿瘤组织的富集,提高了药物的治疗效果,降低了毒副作用。过去对于化学组成相同,不同尺寸、不同形状的纳米载体在细胞水平及动物体内的性质差别较少关注。无机纳米粒子的尺寸和形状比较易于控制,高分子的结构和性质更具多样性。本项申请结合二者的优点,构建介孔Fe2O3-生物可降解高分子杂化纳米药物载体,系统研究杂化纳米载体的尺寸、形状对生物学效应的影响,在细胞水平和整体动物评价载药杂化纳米载体的细胞摄取机制、体内分布、毒性、抗肿瘤疗效等方面的差别,在此基础上发展高效、低毒的化疗药物输送系统。

中文关键词: 介孔;鉄氧化物;纳米球;纳米棒;药物输送

英文摘要: Cancer has become the first killer of the people in the current world.Chemotherapy is still one of the most important methods for the treatment of cancers.Although the chemotherapeutics can effectively kill the cancer cells or inhibit the growth of cancer cells, they can also hurt the healthy cells at the same time. The rapid development of nanotechnology provides the chance for cancer chemotherapy. Nanosized anticancer drug improves the accumulation of drug in tumor and improves the efficiencies of anticancer with lower toxicity and other side effects.In the past two decades, many kinds of nanocarriers, including liposomes, inorganic nanoparticles and polymeric nanoparticles etc., have been designed for the delivery of anticancer drugs, however,the effects of shape of nanocarriers on the delivery of drug has received little attention several years ago. Most recently,some publications reported the difference between spherical mesoporous silica nanoparticles and nanorods in the cellular uptake, biodistribution and bioclearance.In this project, we will combine the advantages of inorganic and biodegradable polymer nanocarriers to construct inorganic/polymeric hybrid nano drug delivry system with well-controlled shape including spherical and rod nanostructures. Furthermore, we will evaluate the size and shape effec

英文关键词: mesoporous;iron oxide;nanosphere;nanorod;drug delivery

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
52+阅读 · 2020年12月28日
机器直觉
专知会员服务
27+阅读 · 2020年11月22日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
115+阅读 · 2020年9月11日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
小贴士
相关VIP内容
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
52+阅读 · 2020年12月28日
机器直觉
专知会员服务
27+阅读 · 2020年11月22日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
115+阅读 · 2020年9月11日
微信扫码咨询专知VIP会员