Reinforcement learning (RL) has made remarkable progress in many decision-making tasks, such as Go, game playing, and robotics control. However, classic RL approaches often presume that all actions can be executed an infinite number of times, which is inconsistent with many decision-making scenarios in which actions have limited budgets or execution opportunities. Imagine an agent playing a gunfighting game with limited ammunition. It only fires when the enemy appears in the correct position, making shooting a sparse-executing action. Such sparse-executing action has not been considered by classic RL algorithms in problem formulation or effective algorithms design. This paper attempts to address sparse-executing action issues by first formalizing the problem as a Sparse Action Markov Decision Process (SA-MDP), in which certain actions in the action space can only be executed for limited amounts of time. Then, we propose a policy optimization algorithm called Action Sparsity REgularization (ASRE) that gives each action a distinct preference. ASRE evaluates action sparsity through constrained action sampling and regularizes policy training based on the evaluated action sparsity, represented by action distribution. Experiments on tasks with known sparse-executing actions, where classical RL algorithms struggle to train policy efficiently, ASRE effectively constrains the action sampling and outperforms baselines. Moreover, we present that ASRE can generally improve the performance in Atari games, demonstrating its broad applicability


翻译:强化学习(RL)在许多决策任务中取得了显著进展,如Go、游戏游戏和机器人控制等。然而,典型的RL方法往往假定所有行动都可以执行无限次数,这与许多行动预算或执行机会有限的决策方案不相符。想象一个玩枪战游戏的代理人,使用有限的弹药。只有当敌人处于正确位置时,它才会开火,使射杀少效行动。传统的RL算法在问题拟订或有效算法设计中并没有考虑到这种微小的执行行动。本文试图通过首先将问题正规化为Sprass Action Markov 决策程序(SA-MDP)来解决执行不易执行的行动问题。在这种情况下,行动空间中的某些行动只能在有限的时间里执行。然后,我们提出一个政策优化算法,即“行动分量”(ASRE),它通过限制行动抽样和基于评估行动紧张性的政策培训来评估行动紧张性。在行动分配中,它试图先将问题正规化。在已知的Sprass Astraal Agramal Aclas 中,我们用已知的缩算法改进了常规行动。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
21+阅读 · 2022年11月8日
Arxiv
13+阅读 · 2022年10月20日
Arxiv
66+阅读 · 2022年4月13日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员