In this paper we study simulation-based methods for estimating gradients in stochastic networks. We derive a new method of calculating weak derivative estimator using importance sampling transform, and our method has less computational cost than the classical method. In the context of M/M/1 queueing network and stochastic activity network, we analytically show that our new method won't result in a great increase of sample variance of the estimators. Our numerical experiments show that under same simulation time, the new method can yield a narrower confidence interval of the true gradient than the classical one, suggesting that the new method is more competitive.
翻译:在本文中,我们研究以模拟为基础的方法来估计蒸馏网络中的梯度。我们用重要的取样变换来计算微弱衍生物估计器的新方法,我们的方法的计算成本比经典方法低。在M/M/1排队网络和随机活动网络方面,我们分析表明,我们的新方法不会导致估计器样本差异的大幅上升。我们的数字实验表明,在同样的模拟时间里,新方法可以产生比经典方法更窄的真实梯度的置信度间隔,这表明新方法更具竞争力。