The current research focus in Robot-Assisted Minimally Invasive Surgery (RAMIS) is directed towards increasing the level of robot autonomy, to place surgeons in a supervisory position. Although Learning from Demonstrations (LfD) approaches are among the preferred ways for an autonomous surgical system to learn expert gestures, they require a high number of demonstrations and show poor generalization to the variable conditions of the surgical environment. In this work, we propose an LfD methodology based on Generative Adversarial Imitation Learning (GAIL) that is built on a Deep Reinforcement Learning (DRL) setting. GAIL combines generative adversarial networks to learn the distribution of expert trajectories with a DRL setting to ensure generalisation of trajectories providing human-like behaviour. We consider automation of tissue retraction, a common RAMIS task that involves soft tissues manipulation to expose a region of interest. In our proposed methodology, a small set of expert trajectories can be acquired through the da Vinci Research Kit (dVRK) and used to train the proposed LfD method inside a simulated environment. Results indicate that our methodology can accomplish the tissue retraction task with human-like behaviour while being more sample-efficient than the baseline DRL method. Towards the end, we show that the learnt policies can be successfully transferred to the real robotic platform and deployed for soft tissue retraction on a synthetic phantom.
翻译:目前,机器人辅助小侵入外科手术(RAMIS)的研究重点是提高机器人自主水平,将外科医生置于监督位置。虽然从演示中学习是自主外科手术系统学习专家手势的首选方法之一,但需要大量的演示,对外科环境的变异条件没有很好地概括化。在这项工作中,我们提议了一种基于开明的自转自流学习(GAIL)的LfD方法,该方法建立在深层强化学习(DRL)的设置上。GAIL将基因化的对抗网络结合起来,学习专家轨迹的分布和DRL设置,以确保对提供人性行为的轨迹进行概括化。我们考虑的是组织回缩自动化,这是一个常见的RAMIS任务,涉及软组织操纵,以暴露一个感兴趣的区域。在我们提议的方法中,一小组专家轨迹可以通过 达芬奇 研究 Kit (dVRK) 获得,并用来对拟议的LfD方法进行培训。GIL网络学习专家轨迹与D的分布,而DL设置的布局则在模拟式组织中,要以更精准的方式展示一个模拟的模型。结果显示我们所采用的方法。结果,我们能够以更精化的模拟的模拟的试制方法。结果显示我们以模拟式的组织方法。