In this paper we enhance Generalized Self-Adapting Particle Swarm Optimization algorithm (GAPSO), initially introduced at the Parallel Problem Solving from Nature 2018 conference, and to investigate its properties. The research on GAPSO is underlined by the two following assumptions: (1) it is possible to achieve good performance of an optimization algorithm through utilization of all of the gathered samples, (2) the best performance can be accomplished by means of a combination of specialized sampling behaviors (Particle Swarm Optimization, Differential Evolution, and locally fitted square functions). From a software engineering point of view, GAPSO considers a standard Particle Swarm Optimization algorithm as an ideal starting point for creating a generalpurpose global optimization framework. Within this framework hybrid optimization algorithms are developed, and various additional techniques (like algorithm restart management or adaptation schemes) are tested. The paper introduces a new version of the algorithm, abbreviated as M-GAPSO. In comparison with the original GAPSO formulation it includes the following four features: a global restart management scheme, samples gathering within an R-Tree based index (archive/memory of samples), adaptation of a sampling behavior based on a global particle performance, and a specific approach to local search. The above-mentioned enhancements resulted in improved performance of M-GAPSO over GAPSO, observed on both COCO BBOB testbed and in the black-box optimization competition BBComp. Also, for lower dimensionality functions (up to 5D) results of M-GAPSO are better or comparable to the state-of-the art version of CMA-ES (namely the KL-BIPOP-CMA-ES algorithm presented at the GECCO 2017 conference).


翻译:在本文中,我们加强了一般化的自我完善粒子蒸汽优化算法(GAPSO),最初是在2018年自然大会的平行问题解决会议上引入的,目的是调查其特性。关于GAPSO的研究通过以下两个假设得到了强调:(1) 通过利用所收集的所有样本,有可能实现优化算法的良好性能,(2) 通过将专门抽样行为(Paces Swarm优化、差异进化和当地配置的平方函数)结合起来,可以实现最佳性能。从软件工程的角度出发,GAPSO认为标准粒子蒸汽优化算法是创建通用全球优化框架的理想起点。在此框架内,开发了混合优化算法,并测试了各种其他技术(例如算法再恢复管理或调整计划)。 与GAPSO的原始配置方法相比,它包括以下四个特征:全球重新启动管理计划,在基于R-ROOPOOOOOOOOOOOOOO值内采集的样本,在GESASO-BSOBSA的改进的测试结果样品上,在GSO-BSO-SO-BA的改进了GSO-SO-B-B-B-SO-SO-B-B-B-B-SO-B-SAR-B-B-B-B-SO-SA的改进的样品样品上,在G-B-B-SA-B-B-SA-B-B-B-S-SB-B-B-SB-B-B-B-B-B-B-B-B-结果的改进的改进的测试性能。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
111+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
207+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2019年10月31日
Arxiv
4+阅读 · 2018年10月5日
Learning to Importance Sample in Primary Sample Space
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员