Recent advancements in miniaturized fluorescence microscopy have made it possible to investigate neuronal responses to external stimuli in awake behaving animals through the analysis of intra-cellular calcium signals. An on-going challenge is deconvoluting the temporal signals to extract the spike trains from the noisy calcium signals' time-series. In this manuscript, we propose a nested Bayesian finite mixture specification that allows for the estimation of spiking activity and, simultaneously, reconstructing the distributions of the calcium transient spikes' amplitudes under different experimental conditions. The proposed model leverages two nested layers of random discrete mixture priors to borrow information between experiments and discover similarities in the distributional patterns of neuronal responses to different stimuli. Furthermore, the spikes' intensity values are also clustered within and between experimental conditions to determine the existence of common (recurring) response amplitudes. Simulation studies and the analysis of a data set from the Allen Brain Observatory show the effectiveness of the method in clustering and detecting neuronal activities.
翻译:最近微缩的荧光显微镜显微镜的进展使得通过分析细胞内钙信号,能够调查对清醒行为动物的外刺激的神经反应。一个持续的挑战是如何将时间信号分解,以便从噪音的钙信号时间序列中提取加注列。在这个手稿中,我们提出了一个嵌巢的贝叶斯定量混合物规格,以便估计浮肿活动,同时在不同的实验条件下重建瞬间微粒峰的分布。拟议的模型利用随机离散混合物的两个嵌入层,以借取实验之间的信息,并发现神经反应分布模式对不同示素的相似性。此外,峰值也在试验条件下和试验条件之间集中,以确定是否存在常见(连续)反应振动。模拟研究以及分析Allen脑观测站的数据集显示,集聚和检测神经活动的方法是有效的。