Rapid detection of spatial events that propagate across a sensor network is of wide interest in many modern applications. In particular, in communications, radar, environmental monitoring, and biosurveillance, we may observe propagating fields or particles. In this paper, we propose Bayesian single and multiple change-point detection procedures for the rapid detection of propagating spatial events. It is assumed that the spatial event propagates across a network of sensors according to the physical properties of the source causing the event. The multisensor system configuration is arbitrary and sensors may be mobile. We begin by considering a single spatial event and are interested in detecting this event as quickly as possible, while statistically controlling the probability of false alarm. Using a dynamic programming framework we derive the structure of the optimal procedure, which minimizes the average detection delay (ADD) subject to a false alarm probability upper bound. In the rare event regime, the optimal procedure converges to a more practical threshold test on the posterior probability of the change point. A convenient recursive computation of this posterior probability is derived by using the propagation pattern of the spatial event. The ADD of the posterior probability threshold test is analyzed in the asymptotic regime. Then, we take a multiple hypothesis testing (MHT) approach and develop a procedure for the detection of multiple propagating spatial events in parallel. The proposed parallel procedure controls the overall false discovery rate (FDR) under prespecified upper bound. Simulations are conducted to verify the theoretical findings. It is shown that exploiting the spatial properties of the event improves the ADD compared to procedures that do not properly take advantage of the spatial information.


翻译:在许多现代应用中,特别是在通信、雷达、环境监测和生物监视方面,我们可以观察到传播的场域或粒子。在本文件中,我们提议采用巴伊西亚单一和多个变化点探测程序,以快速探测传播的空间事件。假设空间事件根据源的物理特性在传感器网络中传播,造成该事件的源的物理特性,多传感器系统配置是任意的,传感器可能是移动的。我们首先考虑一个单一空间事件,有兴趣尽快发现该事件,同时从统计角度控制虚假空间警报的概率。我们利用一个动态程序框架来制定最佳程序的结构,在错误警报概率的上限范围内最大限度地减少平均检测延迟(ADDD)。在稀有的事件制度中,最佳程序会与一个更实用的关于造成该事件源的事后概率的临界值测试相匹配。通过空间事件的传播模式,我们首先考虑一个单一空间事件,并有兴趣尽快探测该事件,同时从统计空间警报的空间同步概率概率概率概率概率概率的概率的概率值分析过程,然后在模拟测试中进行一个测试。

0
下载
关闭预览

相关内容

“后验”是指在考虑与所审查的特定案件有关的相关证据之后。类似地,后验概率分布是未知量的概率分布,视从实验或调查获得的证据为条件,该未知量被视为随机变量。
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
最新《多任务学习》综述,39页pdf
专知会员服务
263+阅读 · 2020年7月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
4+阅读 · 2018年11月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
5+阅读 · 2018年5月16日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
4+阅读 · 2018年11月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员