This is the full version of a paper submitted to the Computability in Europe (CiE 2023) conference, with all proofs omitted there. In 2012 P. D. Azar and S. Micali introduced a new model of interactive proofs, called "Rational Interactive Proofs". In this model the prover is neither honest nor malicious, but rational in terms of maximizing his expected reward. In this article we explore the connection of this area with classic complexity results. In the first part of this article we revise the ties between the counting hierarchy and the hierarchy of constant-round rational proofs. We prove that a polynomial-time machine with oracle access to DRMA[k] decides exactly languages in DRMA[k], a coincidence unknown for levels of the counting hierarchy. In the second part we study communication complexity of single-round rational proofs. We show that the class defined by logarithmic-communication single-round rational proofs coincides with PP. We also show that single-round rational protocols that treat problems in Parity-P as black-box samplers of a random variable require at least a linear number of bits of communication.
翻译:暂无翻译