Accurate uncertainty quantification of model predictions is a crucial problem in machine learning. Existing Bayesian methods, being highly iterative, are expensive to implement and often fail to accurately capture a model's true posterior because of their tendency to select only central moments. We propose a fast single-shot uncertainty quantification framework where, instead of working with the conventional Bayesian definition of model weight probability density function (PDF), we utilize physics inspired functional operators over the projection of model weights in a reproducing kernel Hilbert space (RKHS) to quantify their uncertainty at each model output. The RKHS projection of model weights yields a potential field based interpretation of model weight PDF which consequently allows the definition of a functional operator, inspired by perturbation theory in physics, that performs a moment decomposition of the model weight PDF (the potential field) at a specific model output to quantify its uncertainty. We call this representation of the model weight PDF as the quantum information potential field (QIPF) of the weights. The extracted moments from this approach automatically decompose the weight PDF in the local neighborhood of the specified model output and determine, with great sensitivity, the local heterogeneity of the weight PDF around a given prediction. These moments therefore provide sharper estimates of predictive uncertainty than central stochastic moments of Bayesian methods. Experiments evaluating the error detection capability of different uncertainty quantification methods on covariate shifted test data show our approach to be more precise and better calibrated than baseline methods, while being faster to compute.
翻译:模型预测的准确的不确定性量化是机器学习中的一个关键问题。现有的贝叶斯人方法具有高度迭代性,其执行成本昂贵,而且往往无法准确捕捉模型真正的后背体,因为它们倾向于只选择中心时刻。我们建议了一个快速的单发不确定性量化框架,在这个框架中,我们不采用传统的巴伊西亚模型重量概率密度功能定义,而是利用物理启发的功能操作者在复制的Hilbert空间(RKHS)中预测模型重量的预测,以量化每个模型输出的不确定性。RKHS模型重量的预测产生一种基于模型重量PDF的潜在实地解释,从而允许根据物理中的扰动理论对功能操作者进行定义,在特定模型输出中,对模型重量PDF(潜在字段)进行瞬间分解,以量化其不确定性。我们称之为模型重量PDFF的表示,作为量级信息潜力字段(QIPF),用以量化每种模型输出的不确定性。从这一方法中自动将基准PDF值对模型的重量进行基于实地评估,同时确定这些模型输出的精度的精度的精度的精度,同时确定其精度的精度的精度的精度的精度的精度的精度的精确度的精确度的精确度的精确度方法,同时显示的精度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度,并测量度的精确度的精确度的精确度的精确度的测度。