Neural network ensembles, such as Bayesian neural networks (BNNs), have shown success in the areas of uncertainty estimation and robustness. However, a crucial challenge prohibits their use in practice. BNNs require a large number of predictions to produce reliable results, leading to a significant increase in computational cost. To alleviate this issue, we propose spatial smoothing, a method that spatially ensembles neighboring feature map points of convolutional neural networks. By simply adding a few blur layers to the models, we empirically show that spatial smoothing improves accuracy, uncertainty estimation, and robustness of BNNs across a whole range of ensemble sizes. In particular, BNNs incorporating spatial smoothing achieve high predictive performance merely with a handful of ensembles. Moreover, this method also can be applied to canonical deterministic neural networks to improve the performances. A number of evidences suggest that the improvements can be attributed to the stabilized feature maps and the smoothing of the loss landscape. In addition, we provide a fundamental explanation for prior works - namely, global average pooling, pre-activation, and ReLU6 - by addressing them as special cases of spatial smoothing. These not only enhance accuracy, but also improve uncertainty estimation and robustness by making the loss landscape smoother in the same manner as spatial smoothing. The code is available at https://github.com/xxxnell/spatial-smoothing.


翻译:Bayesian神经网络(BNNs)等神经网络集合体在不确定性估计和稳健性领域表现出成功。然而,一个关键的挑战是禁止在实践中使用这些网络。 BNNs需要大量的预测才能产生可靠的结果,从而导致计算成本的大幅上升。为了缓解这一问题,我们建议采取空间平滑方法,这种方法在空间上将动态神经网络的相邻特征地图点聚集在一起。通过简单地为模型添加一些模糊的层次,我们从经验上表明空间平滑可以提高BNNS的准确性、不确定性估计和稳健性。特别是,包含空间平滑性的BNNS需要大量预测才能产生高的预测性能,而只是使用少量的星团组合。此外,这种方法还可以应用于Canonic 确定性神经网络,以改善性能。一些证据表明,改进的改进可以归因于稳定的特征地图和损失景观的平滑性。此外,我们还为先前的工程提供了基本的解释,即全球平均平滑性组合、平滑性平滑性估算法则通过特殊案例加以改进。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
30+阅读 · 2021年7月7日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员