This article is a review of theoretical advances in the research field of algebraic geometry and Bayesian statistics in the last two decades. Many statistical models and learning machines which contain hierarchical structures or latent variables are called nonidentifiable, because the map from a parameter to a statistical model is not one-to-one. In nonidentifiable models, both the likelihood function and the posterior distribution have singularities in general, hence it was difficult to analyze their statistical properties. However, from the end of the 20th century, new theory and methodology based on algebraic geometry have been established which enables us to investigate such models and machines in the real world. In this article, the following results in recent advances are reported. First, we explain the framework of Bayesian statistics and introduce a new perspective from the birational geometry. Second, two mathematical solutions are derived based on algebraic geometry. An appropriate parameter space can be found by a resolution map, which makes the posterior distribution be normal crossing and the log likelihood ratio function be well-defined. Third, three applications to statistics are introduced. The posterior distribution is represented by the renormalized form, the asymptotic free energy is derived, and the universal formula among the generalization loss, the cross validation, and the information criterion is established. Two mathematical solutions and three applications to statistics based on algebraic geometry reported in this article are now being used in many practical fields in data science and artificial intelligence.
翻译:本文章回顾了过去二十年代代数几何和巴伊西亚统计研究领域的理论进步。许多含有等级结构或潜在变量的统计模型和学习机器被称为不可识别,因为从参数到统计模型的地图不是一对一。在不可识别的模型中,概率函数和后方分布都具有一般的奇数,因此很难分析其统计属性。然而,从20世纪末开始,基于代数几何的新的理论和方法已经建立,使我们能够调查真实世界中的此类模型和机器。在本篇文章中,报告了近期进展的以下结果。首先,我们解释了巴伊西亚统计的框架,并从两面的几何测量中引入了一个新的视角。第二,基于代数的数学数学模型得出了两种数学解决方案,因此很难分析其统计属性。解析图可以找到一个合适的参数空间,使后方分布成为正常的交叉,对逻辑概率比函数功能功能得到明确界定。第三,对统计的三个应用程序被引入了。最近几面科学应用的结果是最近的进展。我们解释了拜斯统计的框架框架框架,从两面的数学数据分布和数学标准中体现了通用的数学标准。在通用的模型中,在通用的模型中,这种模型的模型的模型和数学模型中,这个模型的模型的模型的模型的模拟分布和模型的模型的模型的模型的模型的模型的模型的模型分布是以形式的模型的模型的模型的模型的模型的模型的模型和模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型是以形式。