The vulnerability of deep neural networks to adversarial examples, which are crafted maliciously by modifying the inputs with imperceptible perturbations to misled the network produce incorrect outputs, reveals the lack of robustness and poses security concerns. Previous works study the adversarial robustness of image classifiers on image level and use all the pixel information in an image indiscriminately, lacking of exploration of regions with different semantic meanings in the pixel space of an image. In this work, we fill this gap and explore the pixel space of the adversarial image by proposing an algorithm to looking for possible perturbations pixel by pixel in different regions of the segmented image. The extensive experimental results on CIFAR-10 and ImageNet verify that searching for the modified pixel in only some pixels of an image can successfully launch the one-pixel adversarial attacks without requiring all the pixels of the entire image, and there exist multiple vulnerable points scattered in different regions of an image. We also demonstrate that the adversarial robustness of different regions on the image varies with the amount of semantic information contained.


翻译:深神经网络容易受到对抗性例子的伤害,这些例子是恶意地用无法察觉的干扰来修改输入,从而误导网络产生错误产出,从而暴露出缺乏稳健性和安全隐患。以前的工作是在图像水平上对图像分类器的对抗性强度进行研究,并在图像中不加区别地使用所有像素信息,缺乏对图像像素空间中具有不同语义的区域的探索。在这项工作中,我们填补了这一空白,并探索了对抗性图像的像素空间。我们提出一种算法,在片状图像的不同区域通过像素寻找可能的扰动像素像素。CIFAR-10和图像网络的广泛实验结果证实,只用图像的某些像素搜索修改像素,就可以成功启动一像素对抗性攻击,而不需要全部图像的所有像素,而且在不同区域也存在多种脆弱点。我们还表明,不同区域对图像的对抗性强度与包含的语义信息数量不同。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2019年2月15日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员