All sequential decision-making agents explore so as to acquire knowledge about a particular target. It is often the responsibility of the agent designer to construct this target which, in rich and complex environments, constitutes a onerous burden; without full knowledge of the environment itself, a designer may forge a sub-optimal learning target that poorly balances the amount of information an agent must acquire to identify the target against the target's associated performance shortfall. While recent work has developed a connection between learning targets and rate-distortion theory to address this challenge and empower agents that decide what to learn in an automated fashion, the proposed algorithm does not optimally tackle the equally important challenge of efficient information acquisition. In this work, building upon the seminal design principle of information-directed sampling (Russo & Van Roy, 2014), we address this shortcoming directly to couple optimal information acquisition with the optimal design of learning targets. Along the way, we offer new insights into learning targets from the literature on rate-distortion theory before turning to empirical results that confirm the value of information when deciding what to learn.


翻译:所有顺序决策人员都为了解特定目标而进行探索,以便获得关于特定目标的知识。在丰富和复杂的环境中,设计人员往往有责任构建这个目标,这个目标构成沉重的负担;如果不充分了解环境本身,设计人员可能会形成一个亚最佳学习目标,即一个代理人员必须获得的信息数量不能与目标相关绩效不足相平衡,从而确定目标目标。虽然最近的工作在学习目标与率扭曲理论之间发展了联系,以应对这一挑战,并赋予那些决定以自动化方式学习内容的代理人员权力,但拟议的算法并没有以最佳方式应对有效信息获取这一同等重要的挑战。在这项工作中,以信息导向抽样的初级设计原则(Russo & Van Roy,2014年)为基础,我们直接解决了将最佳信息获取与最佳学习目标设计相结合的这一缺陷。此外,我们提供了从文献中学习率扭曲理论目标的新见解,然后转向验证信息在决定学习什么时的价值的经验结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
7+阅读 · 2018年12月26日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员