Counterfactual inference has become a ubiquitous tool in online advertisement, recommendation systems, medical diagnosis, and econometrics. Accurate modeling of outcome distributions associated with different interventions -- known as counterfactual distributions -- is crucial for the success of these applications. In this work, we propose to model counterfactual distributions using a novel Hilbert space representation called counterfactual mean embedding (CME). The CME embeds the associated counterfactual distribution into a reproducing kernel Hilbert space (RKHS) endowed with a positive definite kernel, which allows us to perform causal inference over the entire landscape of the counterfactual distribution. Based on this representation, we propose a distributional treatment effect (DTE) that can quantify the causal effect over entire outcome distributions. Our approach is nonparametric as the CME can be estimated under the unconfoundedness assumption from observational data without requiring any parametric assumption about the underlying distributions. We also establish a rate of convergence of the proposed estimator which depends on the smoothness of the conditional mean and the Radon-Nikodym derivative of the underlying marginal distributions. Furthermore, our framework allows for more complex outcomes such as images, sequences, and graphs. Our experimental results on synthetic data and off-policy evaluation tasks demonstrate the advantages of the proposed estimator.


翻译:在网上广告、建议系统、医学诊断和计量经济学中,反事实推断已成为一个无处不在的工具。与不同干预措施(称为反事实分布)相关的结果分布的准确模型模型对于这些应用的成功至关重要。在这项工作中,我们提议使用名为反事实嵌入(CME)的Hilbert小说空间代表模式模拟反事实分布。CME将相关的反事实分布嵌入一个具有积极明确内核的再生产Hilbert空间(RKHS)中,这使我们能够对整个反事实分布的景观进行因果关系推断。基于这一表述,我们提议了一种分配处理效果(DTE),可以量化整个结果分布的因果关系。我们的方法是不相容的,因为根据观测数据没有根据的假设来估计CME,而不需要对基本分布作任何对应的假设。我们还确定了一个拟议估算师的趋同率,这取决于有条件平均值的平滑度和反事实分布图的全局。基于这个表达效果的Radion-imestimalalalal-imendimal imal-imalendimalalal-endal-ressalendal imal-viewal-viewdal-viewdal-viewdal-viewdal-viewdal-viewdal-viewdal-viewdal-viewdaldaldaldal-viewdaldaldaldaldaldaldaldaldaldaldaldal 。我们,让我们,让我们的模型,让我们,让我们,让我们的图像,让我们的图像的图像的排序。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
专知会员服务
123+阅读 · 2020年9月8日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月9日
Arxiv
6+阅读 · 2020年12月8日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
专知会员服务
123+阅读 · 2020年9月8日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员