Alpine consists of a set of mini-apps that makes use of exascale computing capabilities to numerically solve some classical problems in plasma physics. It is based on IPPL (Independent Parallel Particle Layer), a framework that is designed around performance portable and dimension independent particles and fields. In this work, IPPL is used to implement a particle-in-cell scheme. The article describes in detail the following mini-apps: weak and strong Landau damping, bump-on-tail and two-stream instabilities, and the dynamics of an electron bunch in a charge-neutral Penning trap. We benchmark the simulations with varying parameters such as grid resolutions ($512^3$ to $2048^3$) and number of simulation particles ($10^9$ to $10^{11}$). We show strong and weak scaling and analyze the performance of different components on several pre-exascale architectures such as Piz-Daint, Cori, Summit and Perlmutter.
翻译:阿尔卑斯山由一系列小型应用物组成,利用数字计算能力解决等离子物理学中的一些古老问题,它以IPPL(独立平行粒子层)为基础,这是围绕性能便携式和维度独立粒子和田地设计的框架。在这项工作中,IPPL被用来实施细胞中的颗粒计划。文章详细描述了以下微型应用物:Landau拖拉、碰撞和双流不稳定,以及电极集成在充电中中式陷阱中的动态。我们用电网分辨率(512美元3美元至2048美元3美元)和模拟粒子数量(10美元至10美元11美元)等不同参数对模拟模型进行基准测量。我们展示了强大和薄弱的缩放,并分析了诸如Piz-Daint、Cori、Elead和Perlmutter等若干前诊断性结构的不同组成部分的性能。