The Cox proportional hazards model is a canonical method in survival analysis for prediction of the life expectancy of a patient given clinical or genetic covariates -- it is a linear model in its original form. In recent years, several methods have been proposed to generalize the Cox model to neural networks, but none of these are both numerically correct and computationally efficient. We propose FastCPH, a new method that runs in linear time and supports both the standard Breslow and Efron methods for tied events. We also demonstrate the performance of FastCPH combined with LassoNet, a neural network that provides interpretability through feature sparsity, on survival datasets. The final procedure is efficient, selects useful covariates and outperforms existing CoxPH approaches.
翻译:Cox比例危害模型是预测临床或遗传共变病人预期寿命的一种求生分析方法 -- -- 这是一种原始形式的线性模型。近年来,有人提议采用几种方法将Cox模型推广到神经网络,但这些方法都没有在数字上正确和计算上有效。我们提议采用FastCPH,这是一种在线性时间运行的新方法,支持标准Breslow和绑定事件Efron方法。我们还演示了快速CPH与LassoNet相结合的性能。LassoNet是一个神经网络,通过特征孔径、生存数据集提供可解释性。最终程序是高效的,选择有用的共变法,并超越了现有的CoxPH方法。