A celebrated theorem of Spencer states that for every set system $S_1,\dots, S_m \subseteq [n]$, there is a coloring of the ground set with $\{\pm 1\}$ with discrepancy $O(\sqrt{n\log(m/n+2)})$. We provide an algorithm to find such a coloring in near input-sparsity time $\tilde{O}(n+\sum_{i=1}^{m}|S_i|)$. A key ingredient in our work, which may be of independent interest, is a novel width reduction technique for solving linear programs, not of covering/packing type, in near input-sparsity time using the multiplicative weights update method.
翻译:Spencer 的一个值得庆祝的理论指出, 对于每个设置的系统, S_ 1,\ dots, S_m\ subseteq [n] $, 地上的颜色以$pm 1 +$ $ 设置, 差异为$O( sqrt{n\log( m/ n+2)} $( sqrt{ n/ n+2} $) 。 我们提供算法, 在接近输入- 平衡时间 $\ tilde{ O} (n\sump ⁇ i=1\\\ m ⁇ % S_i} $(n) 。 我们工作中的一个关键成分, 可能是独立感兴趣的, 是一种解决线性程序的新的宽度缩小技术, 而不是覆盖/ 包装类型, 使用倍增重更新方法在接近输入- 平等时间内找到这种颜色 。