In this article, we study the approximate solutions set $\Lambda_b$ of an inconsistent system of $\max-\min$ fuzzy relational equations $(S): A \Box_{\min}^{\max}x =b$. Using the $L_\infty$ norm, we compute by an explicit analytical formula the Chebyshev distance $\Delta~=~\inf_{c \in \mathcal{C}} \Vert b -c \Vert$, where $\mathcal{C}$ is the set of second members of the consistent systems defined with the same matrix $A$. We study the set $\mathcal{C}_b$ of Chebyshev approximations of the second member $b$ i.e., vectors $c \in \mathcal{C}$ such that $\Vert b -c \Vert = \Delta$, which is associated to the approximate solutions set $\Lambda_b$ in the following sense: an element of the set $\Lambda_b$ is a solution vector $x^\ast$ of a system $A \Box_{\min}^{\max}x =c$ where $c \in \mathcal{C}_b$. As main results, we describe both the structure of the set $\Lambda_b$ and that of the set $\mathcal{C}_b$. We then introduce a paradigm for $\max-\min$ learning weight matrices that relates input and output data from training data. The learning error is expressed in terms of the $L_\infty$ norm. We compute by an explicit formula the minimal value of the learning error according to the training data. We give a method to construct weight matrices whose learning error is minimal, that we call approximate weight matrices. Finally, as an application of our results, we show how to learn approximately the rule parameters of a possibilistic rule-based system according to multiple training data.


翻译:在此文章中, 我们研究大约的解决方案设置了 $\ lambda_ b$ 的不一致的系统 的 $\ max- min$ fuzzy 关系方程式 $( S): A\\ box\ min\ max}x = b$。 我们使用 $\ infty$ 的规范, 以明确的分析公式计算 Chebyshev 距离 $\ Delta\ a mathcal{C\\ vert b - c\ vert b - c\ vert$, 其中$\ mac_ c} 美元是同一矩阵定义定义的第二个成员 $( S): $C_ max 运算的公式 Chebyshev 近值 $e. e. c= max c= max c= max max max a. max modelection a.

0
下载
关闭预览

相关内容

【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
0+阅读 · 2023年3月8日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员