Automatic segmentation of skin lesions from dermoscopic images is a challenging task due to the irregular lesion boundaries, poor contrast between the lesion and the background, and the presence of artifacts. In this work, a new convolutional neural network-based approach is proposed for skin lesion segmentation. In this work, a novel multi-scale feature extraction module is proposed for extracting more discriminative features for dealing with the challenges related to complex skin lesions; this module is embedded in the UNet, replacing the convolutional layers in the standard architecture. Further in this work, two different attention mechanisms refine the feature extracted by the encoder and the post-upsampled features. This work was evaluated using the two publicly available datasets, including ISBI2017 and ISIC2018 datasets. The proposed method reported an accuracy, recall, and JSI of 97.5%, 94.29%, 91.16% on the ISBI2017 dataset and 95.92%, 95.37%, 91.52% on the ISIC2018 dataset. It outperformed the existing methods and the top-ranked models in the respective competitions.
翻译:由于不规则的损伤界限、损伤和背景之间的对比差以及人工制品的存在,对来自脱温图像的皮肤损伤进行自动分离是一项艰巨的任务。在这项工作中,提议对皮肤损伤分割采用新的进化神经网络方法。在这项工作中,提议采用新的多尺度特征提取模块,以提取更具有歧视性的特征,应对与复杂的皮肤损伤有关的挑战;该模块嵌入UNet,取代标准结构中的卷发层。此外,在这项工作中,两个不同的关注机制完善了由编码器和加封后的特征所提取的特征。这项工作利用两种公开的数据集,包括IMSBI2017和ISIC2018数据集,进行了评估。拟议方法报告了ISBI2017数据集的准确性、回顾率和JSII97.5%、94.29%、91.16%和IS2017数据集的95.92%、95.37%、91.52%和ISIC2018数据集中的顶层模型。该方法超越了现有方法和各自竞争中的顶层模型。