The increased dominance of intra-die process variations has motivated the field of Statistical Static Timing Analysis (SSTA) and has raised the need for SSTA-based circuit optimization. In this paper, we propose a new sensitivity based, statistical gate sizing method. Since brute-force computation of the change in circuit delay distribution to gate size change is computationally expensive, we propose an efficient and exact pruning algorithm. The pruning algorithm is based on a novel theory of perturbation bounds which are shown to decrease as they propagate through the circuit. This allows pruning of gate sensitivities without complete propagation of their perturbations. We apply our proposed optimization algorithm to ISCAS benchmark circuits and demonstrate the accuracy and efficiency of the proposed method. Our results show an improvement of up to 10.5% in the 99-percentile circuit delay for the same circuit area, using the proposed statistical optimizer and a run time improvement of up to 56x compared to the brute-force approach.
翻译:迭代内部流程变异的主导性越来越大,这促使了统计静态时间分析(SSTA)领域,并增加了对SSTA为基础的电路优化的需求。在本文中,我们提出了一个新的基于敏感度的统计门缩放法。由于计算计算电路延缓分布变化至门尺寸变化的粗力成本高昂,我们提出了高效和精确的修剪算法。修剪算法基于一种新颖的扰动界限理论,这种理论在通过电路传播时显示会减少。这样就可以在不完全传播扰动的情况下对门的敏感度进行剪切除。我们提出的优化算法适用于ISCAS基准路,并显示拟议方法的准确性和效率。我们的结果显示,使用拟议的统计优化,与粗力方法相比,将门的敏感度提高到56x。我们提出的优化算结果显示,同一电路段99个中位的电路延迟率提高了10.5%。