Song embeddings are a key component of most music recommendation engines. In this work, we study the hyper-parameter optimization of behavioral song embeddings based on Word2Vec on a selection of downstream tasks, namely next-song recommendation, false neighbor rejection, and artist and genre clustering. We present new optimization objectives and metrics to monitor the effects of hyper-parameter optimization. We show that single-objective optimization can cause side effects on the non optimized metrics and propose a simple multi-objective optimization to mitigate these effects. We find that next-song recommendation quality of Word2Vec is anti-correlated with song popularity, and we show how song embedding optimization can balance performance across different popularity levels. We then show potential positive downstream effects on the task of play prediction. Finally, we provide useful insights on the effects of training dataset scale by testing hyper-parameter optimization on an industry-scale dataset.
翻译:歌曲嵌入是大多数音乐建议引擎的一个关键组成部分。 在这项工作中, 我们研究基于 Word2Vec 的行为歌曲嵌入的超参数优化, 以选择下游任务为基础, 即下等建议、 假邻居拒绝、 艺术家和基因组。 我们提出新的优化目标和量度来监测超等参数优化的效果。 我们显示, 单目标优化可以对非优化度量产生副作用, 并提议一个简单的多目标优化来减轻这些效果。 我们发现 Word2Vec 的下等建议质量与歌曲流行有反碳关系, 我们展示歌曲嵌入优化如何平衡不同流行度的性能。 我们然后展示出对玩耍预测任务的潜在积极的下游效应。 最后, 我们通过测试行业规模数据集的超参数优化, 提供关于培训数据集规模影响的有用洞察力。