The traditional observed data used to train the recommender model suffers from severe bias issues (e.g., exposure bias, popularity bias). Interactions of a small fraction of head items account for almost the whole training data. The normal training paradigm from such biased data tends to repetitively generate recommendations from the head items, which further exacerbates the biases and affects the exploration of potentially interesting items from the niche set. In this work, distinct from existing methods, we innovatively explore the central theme of unbiased recommendation from an item cluster-wise multi-objective optimization perspective. Aiming to balance the learning on various item clusters that differ in popularity during the training process, we characterize the recommendation task as an item cluster-wise multi-objective optimization problem. To this end, we propose a model-agnostic framework namely Item Cluster-Wise Multi-Objective Recommendation (ICMRec) for unbiased recommendation. In detail, we define our item cluster-wise optimization target that the recommender model should balance all item clusters that differ in popularity. Thus we set the model learning on each item cluster as a unique optimization objective. To achieve this goal, we first explore items' popularity levels from a novel causal reasoning perspective. Then, we devise popularity discrepancy-based bisecting clustering to separate the discriminated item clusters. Next, we adaptively find the overall harmonious gradient direction for multiple item cluster-wise optimization objectives from a Pareto-efficient solver. Finally, in the prediction stage, we perform counterfactual inference to further eliminate the impact of user conformity. Extensive experimental results demonstrate the superiorities of ICMRec on overall recommendation performance and biases elimination. Codes will be open-source upon acceptance.


翻译:用于培训推荐人模式的传统观测数据存在严重的偏差问题(例如,暴露偏差、受欢迎偏差); 少数项目头项的相互作用几乎占整个培训数据。 这种偏差数据的正常培训范式往往重复产生主项目的建议,这进一步加剧了偏差,并影响从利基组中探索潜在有趣项目。 在这项工作中,不同于现有方法,我们创新地探索了从项目分组-多目标优化角度出发的不偏倚建议的核心主题。为了平衡在培训过程中受欢迎程度不同的项目组群的学习,我们把建议任务定性为项目集的多层次影响多点优化问题。为此目的,我们提出了一个模式性化框架,即项目Croup-Wise-多点多点多点多点多点化多点化多点化建议(ICMERc),然后我们定义了项目组群集应平衡所有受欢迎程度不同的项目组群集。 因此,我们把每个项目组群群的开放式学习设定为一个独特的优化目标。为了实现这一目标,我们首先探讨实验性偏向整体的准确度水平,然后我们从IMForal-Crealimalimal orimalalalalalalalalalalalalalalalalalview,我们从一个项目级组别到Blation 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员