In this article, we concern with a nonlinear inverse problem with forward operator involving an unknown function. The problem arises in diverse applications and is challenging by the presence of the unknown function, which makes it ill-posed. Additionally, the nonlinear nature of the problem makes it difficult to use traditional methods and thus the study has addressed a simplified version of the problem by either linearizing it or assuming knowledge of the unknown function. Here, we propose a self-supervised learning to directly tackle a nonlinear inverse problem involving an unknown function. In particular, we focus on an inverse problem derived in Photoacoustic Tomograpy (PAT) which is a hybrid medical imaging with high resolution and contrast. PAT can be modelled based on the wave equation. The measured data is the solution of the equation restricted to the surface and the initial pressure of the equation contains the biological information on the object of interest. The speed of sound wave in the equation is unknown. Our goal is to determine the initial pressure and the speed of sound wave simultaneously. Under a simple assumption that the sound speed is a function of the initial pressure, the problem becomes a nonlinear inverse problem involving an unknown function. The experimental results demonstrate that the proposed algorithm performs successfully.


翻译:在本条中,我们关注的是与一个未知功能有关的前方操作员的非线性反问题。 问题来自不同的应用, 并且由于存在未知功能而具有挑战性。 此外, 问题的非线性性质使得难以使用传统方法, 因此研究通过线性化或假设了解未知函数, 解决了问题的简化版本。 在此, 我们提议自监督学习直接解决一个涉及未知函数的非线性反问题。 特别是, 我们侧重于来自光声学托莫格雷皮( PAT) 的反问题, 即具有高分辨率和对比的混合医学成像。 PAT 可以在波方程式的基础上模拟。 测量的数据是限于表面的方程式的解决方案, 方程式的初始压力包含对对象的生物信息。 方程式中的声波速度未知。 我们的目标是同时确定音波的初始压力和速度。 简单的假设, 音速是初始压力的函数, 问题会变成一个非线性的数据, 以波的实验结果 。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员