During the design process of an autonomous underwater vehicle (AUV), the pressure vessel has a critical role. The pressure vessel contains dry electronics, power sources, and other sensors that can not be flooded. A traditional design approach for a pressure vessel design involves running multiple Finite Element Analysis (FEA) based simulations and optimizing the design to find the best suitable design which meets the requirement. Running these FEAs are computationally very costly for any optimization process and it becomes difficult to run even hundreds of evaluation. In such a case, a better approach is the surrogate design with the goal of replacing FEA-based prediction with some learning-based regressor. Once the surrogate is trained for a class of problem, then the learned response surface can be used to analyze the stress effect without running the FEA for that class of problem. The challenge of creating a surrogate for a class of problems is data generation. Since the process is computationally costly, it is not possible to densely sample the design space and the learning response surface on sparse data set becomes difficult. During experimentation, we observed that a Deep Learning-based surrogate outperforms other regression models on such sparse data. In the present work, we are utilizing the Deep Learning-based model to replace the costly finite element analysis-based simulation process. By creating the surrogate we speed up the prediction on the other design much faster than direct Finite element Analysis. We also compared our DL-based surrogate with other classical Machine Learning (ML) based regression models( random forest and Gradient Boost regressor). We observed on the sparser data, the DL-based surrogate performs much better than other regression models.


翻译:在自主水下飞行器(AUV)的设计过程中,压力容器具有关键作用。压力容器包含干电子、电源和其他无法淹没的传感器。压力容器设计的传统设计方法是进行多种基于FEA的模拟,优化设计以找到符合要求的最佳适当设计。运行这些FEA对于任何优化过程都是计算成本极高的,甚至难以进行数百次评估。在这种情况下,一种更好的办法是代金法设计,目的是用一些基于学习的递增器取代基于FEA的预测。一旦对压力容器设计进行某类问题的培训,那么,在不运行FEA的情况下,就可以使用基于该类问题的模拟和优化设计以找到最合适的设计设计。运行这些FEA是数据生成的难题。由于计算成本高昂,因此无法对基于设计的空间进行更密集的抽样,对基于稀释数据集的学习反应面也变得困难。在实验期间,我们发现基于深学习的模型比基于学习的递增速度模型要高得多。然后,我们用基于更昂贵的更精确的模型来分析模型来分析,我们用目前基于更昂贵的更精确的更精确的模型来取代基于其他的FI数据。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员