Automated construction of surface geometries of cardiac structures from volumetric medical images is important for a number of clinical applications. While deep-learning based approaches have demonstrated promising reconstruction precision, these approaches have mostly focused on voxel-wise segmentation followed by surface reconstruction and post-processing techniques. However, such approaches suffer from a number of limitations including disconnected regions or incorrect surface topology due to erroneous segmentation and stair-case artifacts due to limited segmentation resolution. We propose a novel deep-learning-based approach that directly predicts whole heart surface meshes from volumetric CT and MR image data. Our approach leverages a graph convolutional neural network to predict deformation on mesh vertices from a pre-defined mesh template to reconstruct multiple anatomical structures in a 3D image volume. Our method demonstrated promising performance of generating high-resolution and high-quality whole heart reconstructions and outperformed prior deep-learning based methods on both CT and MR data in terms of precision and surface quality. Furthermore, our method can more efficiently produce temporally-consistent and feature-corresponding surface mesh predictions for heart motion from CT or MR cine sequences, and therefore can potentially be applied for efficiently constructing 4D whole heart dynamics.
翻译:在许多临床应用中,从体积医学图像中自动构造心脏结构表面的地表地貌对立十分重要。尽管基于深深学习的方法显示重建的精确性很有希望,但这些方法大多侧重于对氧化素的分解,然后是地表重建和后处理技术。然而,由于分解分辨率有限,导致偏离区域或不正确的表层地形学,造成偏差和高品质全心和楼梯人工制品,因此这些方法存在一些局限性,包括断裂区域不相干或不正确的表层地形学。我们建议一种基于深学习的新方法,直接从体积CT和MR图像数据中预测整个心脏表面的模层。我们的方法利用一个图象革命神经网络,从一个预设的网状网状结构中预测网形螺旋的变形,以重建3D图像体积中的多方形结构。我们的方法显示了产生高分辨率和高品质整心积的整形和超越先前基于CT和MMM数据精确性和表面质量的深学习方法的良好表现。此外,我们的方法可以更高效地产生与时间一致和地心形神经反应的神经动态预测,因此,并用于对整心动的MRD的心动。