Temporal action localization (TAL) is an important and challenging problem in video understanding. However, most existing TAL benchmarks are built upon the coarse granularity of action classes, which exhibits two major limitations in this task. First, coarse-level actions can make the localization models overfit in high-level context information, and ignore the atomic action details in the video. Second, the coarse action classes often lead to the ambiguous annotations of temporal boundaries, which are inappropriate for temporal action localization. To tackle these problems, we develop a novel large-scale and fine-grained video dataset, coined as FineAction, for temporal action localization. In total, FineAction contains 103K temporal instances of 106 action categories, annotated in 17K untrimmed videos. FineAction introduces new opportunities and challenges for temporal action localization, thanks to its distinct characteristics of fine action classes with rich diversity, dense annotations of multiple instances, and co-occurring actions of different classes. To benchmark FineAction, we systematically investigate the performance of several popular temporal localization methods on it, and deeply analyze the influence of short-duration and fine-grained instances in temporal action localization. We believe that FineAction can advance research of temporal action localization and beyond.
翻译:时间行动本地化(TAL)是视频理解中一个重要而具有挑战性的问题。然而,大多数现有的TAL基准都建立在行动类别粗略的颗粒上,这在任务中显示出两个主要的局限性。首先,粗略的行动可以使地方化模式在高级背景信息中过度适用,而忽视视频中的原子行动细节。第二,粗略的行动类别往往导致时间界限的模糊说明,这些说明不适合时间行动本地化。为了解决这些问题,我们开发了一个新型的大规模和细微的视频数据集,作为“Fine Action”生成,用于时间行动本地化。总的说来,“FinAction”包含106个行动类别的103K时间实例,在17K无线视频中附加说明。微小的行动为时间行动本地化带来了新的机遇和挑战,因为其特征是具有丰富多样性的精细行动类别,对多种情形的描述十分密集,不同类别共同发生的行动。为了确定时间范围,我们系统地调查了几种流行的时间本地化方法的绩效,并深入分析了短度和细微时间化行动的影响。我们相信,在时间化研究中可以相信地方行动的进展。